Diagnostic Prediction Using Discomfort Drawings with IBTM

نویسندگان

  • Cheng Zhang
  • Hedvig Kjellström
  • Carl Henrik Ek
  • Bo C. Bertilson
چکیده

In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we use a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. The number of output diagnostic labels is determined by using mean-shift clustering on the discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. Additionally, we generate synthetic discomfort drawings with IBTM given a diagnostic label, which results in typical cases of symptoms. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnostic Prediction Using Discomfort Drawings

In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient case...

متن کامل

Causality Refined Diagnostic Prediction

Applying machine learning in the health care domain has shown promising results in recent years. Interpretable outputs from learning algorithms are desirable for decision making by health care personnel. In this work, we explore the possibility of utilizing causal relationships to refine diagnostic prediction. We focus on the task of diagnostic prediction using discomfort drawings, and explore ...

متن کامل

The pain drawing as an instrument for identifying cervical spine nerve involvement in chronic whiplash-associated disorders

OBJECTIVE The aim of the study was to investigate the psychometric properties of a standardized assessment of pain drawing with regard to clinical signs of cervical spine nerve root involvement. DESIGN This cross-sectional study included data collected in a randomized controlled study. PATIENTS Two hundred and sixteen patients with chronic (≥6 months) whiplash-associated disorders, grade 2 ...

متن کامل

RNAstructure: web servers for RNA secondary structure prediction and analysis

RNAstructure is a software package for RNA secondary structure prediction and analysis. This contribution describes a new set of web servers to provide its functionality. The web server offers RNA secondary structure prediction, including free energy minimization, maximum expected accuracy structure prediction and pseudoknot prediction. Bimolecular secondary structure prediction is also provide...

متن کامل

Performance Optimizations via Connect-IBTM and Dynamically Connected TransportTM Service for Maximum Performance on LS-DYNA®

......................................................................................................................................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016